

三节锂电池保护 SIT8992

概述

SIT8992 是一款专为保护 3 串锂离子/聚合物电池的保护芯片,可降低因电池过充、过放、过温或过流而导致的电池损坏或寿命缩短的风险。

SIT8992 超小型 MSOP10 封装和最少的外部元器件需求使芯片易于整合至有限的电池包里。

应用

- 锂离子可充电电池组
- 锂聚合物可充电电池组

特点

- 内置高精度电压检测电路:
 - ◆过充电检测电压

高电压段: Vov=4.200V to 4.375V; 25mV/step 低电压段: Vov=3.400V to 3.950V; 50mV/step 精度: ±25mV

◆过充电滞后电压:

 $V_{OVR} = V_{OV} - V_{\triangle OV} (0^300 \text{ mV}, 100 \text{ mV/step})$

精度: ±50mV

◆过放电检测电压

高电压段: V_{UV}=2.300V to 3.000V; 100mV/step 低电压段: V_{UV}=1.800V to 2.500V; 100mV/step 精度: ±50mV

◆过放电滞后电压:

 $V_{IIVR} = V_{IIV} - V_{\Delta UV} (0^300 \text{mV}, 100 \text{mV/step})$

- 内置三段放电过电流检测电路
 - ◆放电过流 1 检测电压:

V_{DOC1}=25mV~200mV 25mV/step 精度: ±12.5mV

◆放电过流 2 检测电压:

V_{DOC2}=2* V_{DOC1} 精度: ±25mV

◆负载短路检测电流

V_{SC}=4* V_{DOC1} 精度: ±25mV

■ 充电过流检测电路

V_{COC}=20mV~50mV 10mV/step 精度: ±6mV

- 温度保护电路
 - ◆放电温度保护 DOT
 - ◆充电过温保护 COT
- 低消耗电流:
 - ◆工作状态时: 15µA
 - ◆ 休眠状态: <1.5uA

S1T8992

典型应用电路

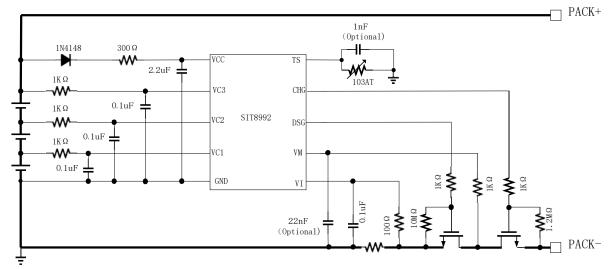


图 1 管脚排布

产品目录表

型号	过充电 检测电	过充电 释放电	过放电 检测电	过放电 释放电	放电过 流检测	充电过 流检测	放电高 温检测	充电高 温检测
	压	压	压	压	电压	电压	温度	温度
参数	(V_{CUn})	(V _{CLn})	(V_{DLn})	(V _{DU1,2})	(V _{OC1})	(VCOC)	(TDOT)	(TCOT)
		V	V	V	mV	mV	$^{\circ}$ C	$^{\circ}$ C
S1T8992A	4. 250	4. 050	2. 700	3. 000	100	30	70	50
S1T8992B	4. 200	4. 100	2. 700	3. 000	50	20	70	50
S1T8992C	4. 225	4. 025	2. 700	3. 000	100	40	70	50
S1T8992D	3. 900	3. 800	2. 300	2. 700	100	40	70	50
S1T8992G	4. 250	4. 150	2. 700	3. 000	50	20	70	50

表 2. 产品目录

S1T8992

管脚分布

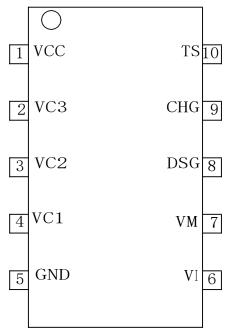


图 2 管脚排布

编号	符号	描述
1	VCC	芯片供电引脚
2	VC3	第三节电芯正极输入端
3	VC2	第三节电芯负极输入端,第二节电芯正极输入端
4	VC1	第二节电芯负极输入端,第一节电芯正极输入端
5	GND	第一节电芯正极输人端
6	VI	电流检测电压输入引脚
7	VM	负载检测和充电器引脚
8	DSG	放电 MOSFET 驱动输出引脚
9	CHG	充电 MOSFET 驱动输出引脚
10	TS	温度检测电压输入引脚

表 1. 管脚描述

S1T8992

功能框图

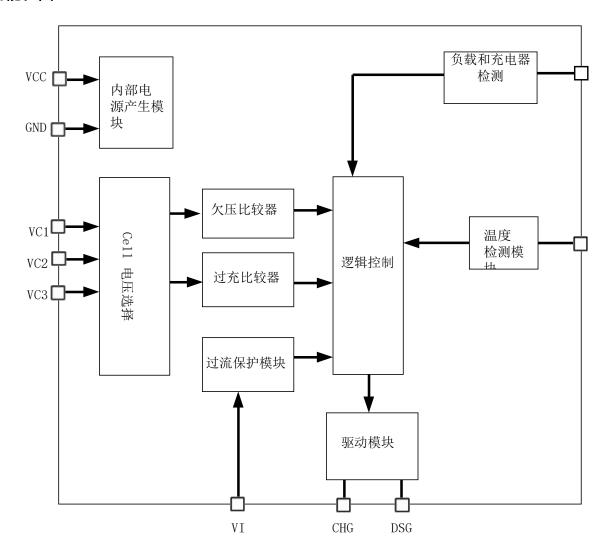


图 2. 功能框图

S1T8992

绝对最大额定值(注意,应用不要超过最大额定值,以防止损坏。长时间工作在最大额定值的情况下可能影响器件的可靠性。)

参 数	符号	适用端子	额定值	单 位
VCC-GND 间输入电压	V _{CC}	VCC	GND-0.3~GND+17	V
VM 输入端子电压	V_{VM}	VM	GND-0.3~V _{CC} +0.3	V
DSG 输入端子电压	V_{DSG}	DSG	GND-0.3~V _{CC} +0.3	V
CHG 输出端子电压	V _{CHG}	CHG	GND-0.3~V _{CC} +0.3	V
TS 输出端子电压	V _{TS}	TS	GND-0.3~GND+6	V
VI 输入端子电压	V _{VI}	VI	GND-0.3~GND+6	V
VC1、VC2、VC3 输入端子电压	V _{VC1-3}	VC1、VC2、 VC3	GND-0.3~V _{CC} +0.3	V
容许功耗	P _D	_	150	mW
工作环境温度	T _{OP}	_	-40~+85	$^{\circ}$ C
保存温度	T _{ST}	_	-40~+125	$^{\circ}$ C

表 2. 绝对最大额定值

电气参数 (若无特别指明, Ta= 25℃, V1=V2=3.2V)表 3. 电气参数

9.2 直流电气特性 (无特别说明,电气特性在 25°C 下测得)

项目	记号	最小值	典型值	最大值	单位	测试条	件
工作电压	VCC	3.3		13.5	V	VCC-G	SND
启动电压	VPOR	4.4	4.8	5.2	V	VCC 上	升沿
关断迟滞电压	△VPOR		0.6		V	VCC 下	降沿
工作电流 (正常模式)	I _{DD}		0		20	uA	
工作电流(休眠模式)	I _{IDLE}				1.5	uA	
过充部分							
		4.200		4.375		高电压模式	每一档位 25mV
过充电保护电压	V _{ov}	3.600		3.95	V	低电压模式	每一档位 50mV
过充电保护电压精度	V _{OVA}		25		mV		
过充电保护解除电压		3.800		4.375	.,	高电压模式	每一档位
及几电体扩展际电压	V _{OVR}	3.300		3.900	V	低电压模式	100mV
过充电保护解除电压精 度	V _{OVRA}		50			mV	,
过充电保护延时	Tov		1			S	

三节锂电池保护 S1T8992 过充电保护解除延时 T_{OVR} S 1 过放部分 高压模式 每一档位 2.300 3.000 过放电保护电压 V_{UV} ٧ 低压模式 1.800 2.500 100mV 过放电保护电压精度 80 V_{UVA} mV 每一档位 高压模式 2.000 3.400 过放电保护解除电压 ٧ V_{UVR} 低压模式 100mV 1.800 3.200 过放电保护解除电压精 80 mV V_{UVRA} 度 过放电保护延时 S 1 t_{UV} 过放电保护解除延时 1 S t_{UVR} 放电过流部分 过流 1 保护电压 每一档位 25mV V_{DOC1} 25 300 mV 过流 1 保护电压精度 V_{DOC1A} 12.5 mV 过流 1 保护延时 S 1 t_{DOC1} 过流 2 保护电压 2* V_{DOC2} V_{DOC1} 过流 2 保护电压精度 V_{DOC2A} 20 mV 100 每一档位 100mS 过流 2 保护延时(可选) 400 mS T_{DOC2} 短路保护电压 4 * ٧ V_{SC} V_{DOC1} 短路保护延时 200 250 300 uS t_{SC} 充电过流部分 充电过流保护电压 每一档位 10mV V_{COC} 20mV 50mV 充电过流保护电压精度 10 V_{COCA} mV 温度部分 充电高温保护温度 $^{\circ}$ C T_{COT} 46 50 54 充电高温保护恢复温度 $^{\circ}$ C 41 49 T_{COTR} 45 充电高温保护温度 T_{DOT} $^{\circ}$ C 66 70 74 $^{\circ}$ C 充电高温保护恢复温度 51 59 T_{DOTR} 55 温度保护检测延时 S t_{T} 1.5 3 5.5 温度保护检测解除延时 1.5 3 5.5 S t_{TR} 放电状态判断电压 2.5 4 5.5 mV V_{DCH} 驱动部分 充电 MOSFET 打开 6 uA 充电 MOSFET 驱动电流 I_{CDR} 充电 MOSFET 关闭 0.05 uΑ DSG 输出高电平输出 VCC-VCC-1 ٧ 0.7 DSG 输出低电平输出 0.1 V

S1T8992

工作说明 上电过程

当电源接入时,VCC上升,当 VCC<VPOR,充放电 MOSFET 默认关闭,当 VCC>VPOR,SIT8992 启动并 检测电池电压和温度。如果没有 OV 和 COT 事件, 充 电 MOSFET 打开。如果没有 UV 和 DOT 事件,且 负载断开或者充电器接入,放电 MOSFET 打开,

SIT8992 进入正常工作状态

过充电状态

SIT8992 周期性检测电芯电压,一旦任何一节电池电压连续两次超过 Vov,并且持续时间超过过充保护延迟时间 TOV,SIT8992 进入过充电保护状态(OV),充电 MOSFET 关闭。在 OV 状态,SIT8993 一旦检测到放电电流,充电 MOSFET 立即打开。

如果芯片检测到每节电池的电压连续两次低于 VovR, SIT8993 退出过充电状态,此时若无其它保护事件,则打开充电 MOSFET。

过放电状态

SIT8992 周期性检测电芯电压,一旦任何一节电池电压连续两次超过 V_{UV} ,并且持续时间超过过放电保护延迟 T_{UV} ,SIT8992 进入过放电保护状态(UV),放电 MOSFET 关闭,同时打开充电器检测功能。

如果没有其它保护事件,且超过 8S 无充电器插入, SIT8992 进入待机状态,芯片功耗将至 1.5uA 以下, 一旦检测到充电器插入,芯片退出待机状态。

如果芯片负载锁定解除后,下列条件均满足时,过 放电保护状态解除:

(b) 检测到充电器且所有电芯电压高于 V_{tv}, 或移

除负载且所有电芯电压高于过放电保护解除电压 Vurn

② (1)中状态持续时间超过过放电保护解除延时 t_{INR}

放电过流 1: 当 $V_{VI} \geqslant V_{DOC1}$,且持续时间大于 T_{DOC1} ,放电过流 1 触发,放电 MOSFET 关闭。

放电过流 2: 当 $V_{VI} \!\!>\!\! V_{DOC2}$,且持续时间大于 T_{DOC2} ,放电过流 2 触发,放电 MOSFET 关闭。

短路电流: 当 $V_{VI} \!\!>\!\! V_{SC}$,且持续时间大于 T_{SC} ,短路电流触发,放电 MOSFET 关闭

放电过流发生时,只有负载移出时才会解除。

充电过流状态

SIT8992 充电过流保护功能:

VCOC: 当V_{IV}≥V_{COC} 且延迟时间 TD≥T_{COC}, 充电过流触发,充电 MOSFET 关闭。

充电过流发生时, 充电器移出解除。

温度保护

在正常工作条件下, **SIT8992** 通过一个 103AT (B=3950) 热敏电阻周期性检测温度。

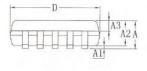
充电过温: SIT8992 一旦连续检测到电池组温度高于充电过温保护阈值 T_{cor} 两次,并且持续时间超过过

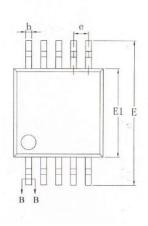
温保护延迟时间 t_r, 充电 MOSFET 关闭。

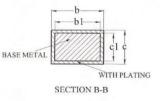
SIT8992 一旦连续检测电池组的温度低于充电过温恢复阈值 T_{COTR} 两次,充电过温解除,充当 MOSFET 打开。

放电过温: SIT8992 一旦连续检测到电池组温度高于放电过温保护阈值 T_{DOT} 两次,并且持续时间超过过温保护延迟时间 tT,充放电 MOSFET 关闭。

SIT8992 一旦连续检测电池组的温度低于放电过温恢复阈值 $T_{\tiny DOTR}$ 两次,放电过温解除,充放电 MOSFET打开。


放电过流状态


SIT8992 有三段放电过流保护功能:


S1T8992

封装尺寸 MSOP10L

SYMBOL	MILLIMETER					
SIMBOL	MIN	NOM	MAX			
A	_	_	1.10			
A1	0.05	_	0.15			
A2	0.75	0.85	0.95			
A3	0.30	0.35	0.40			
ь	0.18	_	0.26			
bl	0.17	0.20	0.23			
c	0,15	0-8	0.19			
cl	0.14	0.15	0.16			
D	2.90	3.00	3.10			
E	4.70	4.90	5.10			
E1	2.90	2.90 3.00				
c	0.50BSC					
L	0.40	_	0.70			
LI	0.95REF					
9	0	9_9	8°			

直销:深圳市高之地科技有限公司 www.hlec.com.cn

Wechat

1688